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Abstract—As the cost of human full genome sequencing con-

tinues to fall, we will soon witness a prodigious amount of human

genomic data in the public cloud. To protect the confidentiality

of the genetic information of individuals, the data has to be

encrypted at rest. On the other hand, encryption severely hinders

the use of this valuable information, such as Genome-wide Range

Query (GRQ), in medical/genomic research. While the problem

of secure range query on outsourced encrypted data has been

extensively studied, the current schemes are far from practical

deployment in terms of efficiency and scalability due to the data

volume in human genome sequencing.

In this paper, we investigate the problem of secure GRQ over

human raw aligned genomic data in a third-party outsourc-

ing model. Our solution contains a novel secure range query

scheme based on multi-keyword symmetric searchable encryption

(MSSE). The proposed scheme incurs minimal ciphertext expan-

sion and computation overhead. We also present a hierarchical

GRQ-oriented secure index structure tailored for efficient and

large-scale genomic data lookup in the cloud while preserving

the query privacy. Our experiment on real human genomic data

shows that a secure GRQ request with range size 100,000 over

more than 300 million encrypted short reads takes less than

3 minutes, which is orders of magnitude faster than existing

solutions.

I. INTRODUCTION

We are on the cusp of a new era in genomic research. Full
genome sequencing (FGS) is conducted to comprehensively
decode an organism’s genetic make-up. It allows us to gain
an unprecedented level of understanding on the biological
inner workings. Medical/genomic researchers can now predict
disease susceptibilities and drug responses base on a person’s
genome. Over the past decade, the cost for sequencing the
genome of a person has been substantially reduced from $100
million or so in 2001 to roughly $1, 000 in 2015 [1]. The
promising future of personalized medicine is now within reach
due to the sequencing cost reduction. On the other hand,
one of the questions we need to answer is how one can
effectively and efficiently handle the data proliferation as a
result of FGS [2]. Large volume of genomic data from patients
becomes a challenge for medical facilities. Public cloud, such
as Google Genomics, DNAnexus, etc., may provide us with
an economical solution for storage, but it also exposes users to
the pitfall of privacy breach [3]. Due to the “highly-sensitive”
nature of genomic data, such data loss can lead to severe
consequences.

Secure Genome-wide Range Query. The human genome is
composed of sequences of nucleotides. The process of human
genome sequencing records segments of these sequences as
short reads. Each short read contains genetic information of a

biological property of an individual. Short reads are aligned to
the human reference genome to determine its relative position
in the chromosome. In medical research, scientists and medical
professionals obtain short reads within a specific range in the
chromosome to study the genetic attributes of an individual.
This search is often referred to as Genome-wide Range Query.
It retrieves all the short reads of interest within the queried
range that is defined by a lower and upper position in the entire
genome. Usually, such study is supervised or regulated by a
Trusted Authority, such as National Institutes of Health (NIH),
Food and Drug Administration (FDA). GRQ has been widely
adopted in many applications in real world. For instance, a
pharmaceutical company hopes to issue a query on a particular
range of genomic data of a patient in order to find some DNA
fingerprints/biomarkers for personalized medicine. In this case,
the company needs to obtain approval on such query from
the FDA first [4], [5]. For another example, an authorized
physician can request a range of your genome for certain
genetic tests that may indicate your potential response to a
drug before he makes a clinical decision. With the low-cost
DNA sequencing for the masses, Genome-wide Range Query
given in the above examples is expected to be extensively used
on top of the genomic data storage in many healthcare-related
services and genomic research [6], [7].

Intuitively, existing secure range query techniques, e.g.,
order-preserving symmetric encryption (OPSE) [8], predicate
encryption (PE) [9], [10], etc., may be the promising build-
ing blocks for a secure GRQ realization. However, directly
applying them to an enormous amount of genomic data will
cause privacy and efficiency concerns. In general, genomic
data is range-sensitive because given specific query range
information, the adversary can easily figure out the underlying
genetic test. In order to facilitate efficient query, possible
solutions [8], [10] in the literature may outright leak data
ordering information which can be employed to compromise
the range privacy. On the other hand, naı̈ve use of current
raw genomic data structure for multiprocessing will result in
a significant scalability issue in the cloud [11], [12]. Direct
adoption of the “heavy” cryptographic tools or an ill-designed
index structure for the cloud deployment will even worsen the
situation by introducing prohibitive performance penalty.

Our Contributions. In this paper, our several key obser-
vations enable a novel solution to the efficient and scalable
secure GRQ design. We first observe that the current secure
range query solutions, when used in the context of GRQ,
suffer from either slow search process [9], or compromised



security guarantees [8], [10], [13], i.e. fully revealing ordering
information, so as to achieve efficient query, let alone their
scalability constraint. Straightforward as this order-comparison
method is, it also gives the adversary a distinct advantage in
the range identification with a reference genome.

We propose a novel secure range query scheme by designing
a multi-keyword symmetric searchable encryption, which may
be of independent interest. It is suitable for search over space-
consuming raw genomic data storage. The security of the
proposed scheme is derived from the MSSE security against
adaptive chosen-keyword attacks (CKA2) [14]. Our scheme
shows the same privacy guarantees as the current practical
solution but with a much better (logarithmic-time) query
efficiency.

By plaintext ordering obfuscation and a privacy-preserving
re-sorting process, we present a hierarchical secure index
structure, which captures the real-world situation of genomic
data processing in the cloud, featuring a scalable and efficient
GRQ search over human raw aligned genomic data.

We implement our proposed scheme on real human sequenc-
ing data. The experiment demonstrates the efficiency, and its
promising future deployment in a large-scale GRQ scenario.

II. RELATED WORKS

Cryptographic Range Query. Boldyreva et al. proposed
an order-preserving symmetric encryption [8] that allows the
ordering of the numerical plaintexts to be preserved in their
encrypted forms. As a result, range query can be realized
by ciphertext comparison. Apart from the practical security
concerns [15], due to its order-revealing property, OPSE is
not an appropriate building block for GRQ, which enables the
adversary to determine the query range information trivially.
Boneh et al. proposed an order-revealing symmetric functional
encryption scheme [13], which is still inefficient for practical
use due to the computationally expensive multilinear map
operations. It also suffers from the order privacy breach as
OPSE in the GRQ scenario.

Predicate encryption is another promising cryptographic
primitive for GRQ. The decryption will succeed should the
ciphertext fall into the queried range. In the public key setting,
Shi et al. [16] proposed a PE scheme for multidimensional
range query with linear search complexity. Note that the major
inhibitor for the adoption of asymmetric PE in practice is the
predicate privacy breach [9], i.e., an adversary can generate
a ciphertext with the public key and then launch a brute-
force attack to infer the encrypted query. Thus, people resort
to the symmetric PE schemes [9], [10] to provide better
search privacy at the price of significant usability deterioration
in the case of GRQ (the strawman solution in Sect. IV-A).
We may adopt a logarithmic-time B+-tree based PE scheme
proposed in [10]. However, for any ordered tree-based PE
schemes, regardless of asymmetric or symmetric, the ordering
information of the encrypted data will be directly disclosed.
As a result, we can only achieve linear search when applying
PE to GRQ at present.

Secure Keyword Search. Secure keyword search can be real-
ized by either symmetric [14], [17], [18] or asymmetric [19],
[20] cryptography. Curtmola et al. [14] proposed a searchable
symmetric encryption (SSE) for single keyword search, and
gave a formal security notion, i.e., security against chosen-
keyword attack (CKA1) and a stronger and adaptive notion
of CKA2. Sun et al. [18] proposed a UC-secure verifiable
conjunctive keyword search scheme over dynamic encrypted
cloud data in the malicious model. The verification cost only
depends on search operation irrespective of the dataset size.
In the public key scenario, Boneh et al. [19] presented a
public key encryption with keyword search (PEKS) derived
from identity-based encryption. In [20], the authors presented a
verifiable attribute-based keyword search scheme, where only
authorized users can obtain the intended search result.
Privacy-preserving Genomic Study. In the literature, privacy-
preserving genomic data research has been extensively inves-
tigated to realize a variety of functionalities by the adoption
of either secure multi-party computation (SMC) or secure
outsourced computation techniques.

By using honey encryption, Huang et al. [21] proposed a
secure outsourced genomic data storage scheme against the
dictionary attack, where each decryption by the adversary even
with an incorrect secret key will yield a valid-looking plaintext.
Baldi et al. [5] presented a framework that aims for several
important applications, such as paternity test, personalized
medicine and genetic compatibility test by the generic secure
two-party computation techniques. In [22], the authors pre-
sented an efficient secure edit distance approximation method,
which is used to look for patients with similar genomic pattern
(disease). Chen et al. [23] proposed a hybrid cloud-based
scheme to delegate the partial read mapping task to the public
cloud in a privacy-preserving manner.

There are few works towards secure and efficient solutions
to the GRQ problem in the literature. The authors in [7]
proposed a protocol that incorporates stream cipher, position
scrambling and OPSE to store and retrieve the private raw
genomic data. At the same time, the authors also expressed
their concerns that this OPSE-based framework may not be
secure for most practical applications [6], especially given a
recent attack on OPSE [15]. Further, its practical efficiency is
not satisfactory compared to ours.

III. BACKGROUND

A. Biology Preliminaries

Genome represents the entirety of an organism’s hereditary
information, consisting of two long complementary polymer
chains of four simple units called nucleotides, represented by
letters A, C, G and T, which combine to form the double-
stranded deoxyribonucleic acid (DNA) molecules in humans.
There are approximately 3 billion nucleotides in 23 chromo-
somes of a human genome.
Single nucleotide polymorphisms (SNPs) are the most
common form of DNA variation occurring when a single
nucleotide (A, C, G, or T) in the genome differs between
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Fig. 1. Format illustration of a sample short read. (a) The original format in
a SAM file; (b) Simplified read format

members of the same species or paired chromosomes of an
individual. SNPs often correspond to how humans develop
diseases and respond to pathogens, chemicals, drugs, vaccines
and other agents. Thus, they are usually adopted as fingerprints
in a variety of genetic tests and genomic research.
Raw aligned genomic data for an individual is the aligned
output of a DNA sequencer, comprised of millions of short
reads, covering the entire genome of that person and sub-
sequently aligned by using a reference genome. Each short
read corresponds to a sequence of nucleotides within a DNA
molecule. The position of a short read with respect to the
reference genome is determined by the approximate match on
the reference genome [6].

The raw alignment data can be stored in a sequence
alignment/map (SAM) file, a BAM file (the binary version
of SAM), or in a compressed CRAM file. Only SAM file
is human readable albeit all the three formats contain the
same alignment information [24] (We use SAM file for ease
of illustration purpose only, but the proposed scheme is also
applicable to BAM file). The format of a short read in a SAM
file encompasses several data fields as shown in Fig. 1(a), three
of which are considered privacy-sensitive.

The first is the position information PI=(RNAME,POS).
RNAME is the name of the chromosome where this short
read resides, and POS is the position of where this read
maps to the reference chromosome. For example, the POS
of the read in Fig. 2(a) relative to the reference is 5. As
such, a genome-wide range query can be issued based on the
positions PI of the intended short reads. For instance, with the
range query [(3, 100), (3, 150)], all the short reads, residing
in between POS = 100 and POS = 150 of the reference
chromosome 3, will be retrieved. The second sensitive field is
the Concise Idiosyncratic Gapped Alignment Report (CIGAR)
string, a sequence of nucleotide length and the associated
operation, used to indicate which nucleotides align with the
reference with letter M, are deleted from the reference with
D, and are insertions not in the reference I (please refer to
[24] for detailed exposition). Thus, the CIGAR string of the
aligned read in Fig. 2(a) is 3M1I3M1D5M. The CONTENT
field consists of sensitive nucleotide information, e.g., SNPs.
On the other hand, the rest of a short read are deemed non-
private fields for a person. Hence, we skip the discussion of

RefPos:       1   2   3   4   5   6   7      8    9  10  11  12  13  14  15  16  17  18  19
Reference:  C  C   A  T   A  C   T      G   A   A   C   T    G   A   C   T    A    A   C
Read:                               A  C   T A  G   A   A         T    G   G   C   T

After Masking:                          T A  G         A         T    G   

Out-of-query-range 
nucleotides

Out-of-query-range 
nucleotides

(a)

(b)

Sensitive SNP

Fig. 2. (a) Short read alignment with the reference; (b) Content protection

these fields hereafter and only focus on the simplified privacy-
sensitive read format as shown in Fig. 1(b).

B. Secure GRQ Model
As shown in Fig. 3, a typical real-world secure GRQ system

consists of four entities, data contributor (DC), medical unit
(MU), trusted authority (TA), and Genobank. Specifically, DC
can be a patient who submits his biospecimen to a certified
institution for full genome sequencing. Then his raw genomic
data are generated and uploaded to TA for data preprocessing
before outsourced to the public Genobank. Subsequently, TA
anonymizes the data, e.g., it will erase the identity information
linked to a particular patient. The anonymized data will be
used to generate a secure index and then encrypted, which are
sent by TA to Genobank in the end.

MUs including biomedical researchers, physicians, pharma-
ceuticals, etc., may ask for a particular range of the alignment
data of a patient for further genetic tests (processing GRQ
for multiple patients may follow the same procedure as in the
single patient situation). In this case, a GRQ request is sent
to TA, which contains the identities of MU and the queried
patient, intended genome range and query purpose (what kind
of genetic test to be conducted later). It is worth noting that the
role of TA has been established in the plaintext GRQ before
our design and can be played by government agencies, like
NIH, FDA, etc., to perform the authentication/authorization to
MU and its query. Upon authentication, a private GRQ request
is produced, and TA submits it to Genobank on behalf of MU.

Genobank runs the secure GRQ search algorithm with
the private GRQ query over the stored secure indexes. The
corresponding encrypted alignment data is then retrieved and
sent back to TA. In the end, TA decrypts the data, masks the
sensitive information based on the genomic privacy policy,
and returns result to MU. As with previous works [7], [23],
we assume that TA as the only authoritative party in the
system is anticipated to have sufficient computation resources
(e.g., dedicated server, private cloud, etc.), or can delegate
the computation to other certified institutions. Furthermore,
all the communication channels in the system are assumed
to be secure. The discussion on the corresponding genomic
data de-identification [25] and user authorization in the search
phase [14], [20] is outside the scope of this paper.

C. Privacy Threats
We assume that DC is honest and not expected to be

involved in the potential genetic tests [7]. TA is the key enabler
entity in the system and acts as a private key manager/holder,
standing between the user and Genobank. It conceals the
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� Real-world Experiment RealA(�):
In the setup phase, the challenger runs Setup(1�) to generate a key set K.
A sends a tuple (IND,F) to the challenger. He receives F̄  Enc(F ,K)
and secure index structure ( ¯INDT , {Ts}) IndGen(IND,K).
In the search phase, for i = 1, . . . , q,

• A chooses a keyword set Qi and sends it to the challenger.
• The challenger returns an MSSE query Q̄i  QueryGen(Qi,K) to A.

Finally, A outputs a bit b.

� Ideal-world Experiment IdealA,S(�):
A chooses a tuple (IND,F). Given L1(IND,F), S outputs a tuple
( ¯INDT , {Ts}, F̄) and returns it to A.
In the search phase, for i = 1, . . . , q,

• A chooses a keyword set Qi.
• Given L2(IND,F ,Qi), S returns Q̄i to A.

Finally, A outputs a bit b0 in this experiment.

Fig. 4. Real-world and Ideal-world experiments

identity of MU so that the semi-honest Genobank cannot infer
the underlying genetic test through such side information.

We assume that MU will not collude with Genobank to
gain unauthorized access privileges. For MU, as shown in
Fig. 2(b), we try to protect 1) Out-of-query-range privacy:
We need to hide the out-of-query-range genomic information
in the result short reads; 2) Sensitive SNPs protection: It
requires the protection of sensitive SNP information within
the queried range from MU, because these SNPs may happen
to be indicators of other potential diseases irrelevant to the
required genetic test [26].

Almost all the secure range search constructions [7], [9],
[10], [13] leak access pattern, i.e., after searching in the
dataset, the encrypted result is disclosed, and search pattern,
i.e., whether the range was queried before, if the underlying
query generation is deterministic. We do not aim to protect
them due to the incurred expensive computation or/and com-
munication overheads [27].

We define two stateful leakage functions L1 and L2 to
precisely capture what is being revealed by the ciphertext and
the query: 1) L1(IND,F). On input of the index IND and
the genomic data file F containing millions of short reads
SR, this function outputs the number of short reads in F , and
the size of each short read |SR|; 2) L2(IND,F ,Q). Besides

IND and F , this function also takes as input the query set
Q searched in the past, and reveals search and access pattern.
We first adapt the CKA2 security in [14] for an MSSE scheme
that serves the core construction for our GRQ protocol in Fig.
5. Then we will reduce the security of the GRQ design to
that of the MSSE (Sect. V). Specifically, we aim to ensure
the confidentiality of a short read and its position information
relative to the reference genome during the query phase.

Definition 1: (CKA2 security for MSSE) We consider two
experiments in a real world and an ideal world respectively in
Fig. 4, where A is a stateful adversary, S is a stateful simulator,
and L1 and L2 are stateful leakage functions described above.

We say that the proposed MSSE scheme is CKA2 secure if
for all probabilistic polynomial-time (PPT) adversary A, there
exists a PPT simulator S such that

|Pr[RealA(�) = 1]� Pr[IdealA,S(�) = 1]|  neg(�).

IV. SECURE GRQ CONSTRUCTION

In this section, we first see how a conventional sym-
metric PE-based strawman solution fails the design goals
(Sect. IV-A). Then we present our efficient and scalable secure
GRQ scheme (Sect. IV-B) based on a novel hierarchical index
structure and improve the search efficiency by filtering out the
irrelevant query terms in a pre-search stage (Sect. IV-C).

A. Strawman Solution
PE has been adopted widely to achieve secure range query

on outsourced encrypted data [9], [10], where only the ci-
phertext within the range of interest can be decrypted. Hence,
seemingly we can design a secure GRQ scheme by trivially
using symmetric PE for better predicate privacy [9]. However,
when PE is applied to an enormous volume of data, such as
human genome, efficiency and scalability become the primary
concerns. For example, by using symmetric inner-product
predicate-only encryption [9], [10], the encrypted index size
for a single short read is proportional to the position domain
size N = 3⇥ 109, which leads to a significant ciphertext size
expansion. Besides, the computation cost for encryption, token
generation, and single read query operation are all proportional



Setup

K  Setup(1�). On input of a security parameter �, this probabilistic algorithm outputs a secret key set K = (k1, k2).

Data Upload

F̄  Enc(F ,K). To encrypt a short read SRi in F , TA generates a random nonce ri, and then acquires the encrypted read S̄Ri from the first li bits of
SRb

i � hk2 (ri). � denotes the bit-wise XOR operation. In the end, all the short read ciphertexts Ci = {S̄Ri, ri} for this patient are stored in a secure
genomic data file F̄ .
( ¯INDT , {Ts})  IndGen(IND,K). Let IND = {PIi}1in1 be an ordered index set for all the short reads in F . Then TA first generates an
obfuscated index set ¯IND = {h(i)} with h(i) = hk1 (PIi). Next, ¯IND is sorted to an ordered set as per the value of h(i), which is further split into d
partitions with equal length q such that dq = n1. In addition, for each partition s = 1, ..., d, an ordered index table Ts is produced with q tuples in the
form of {h((s � 1)q + z), off(s�1)q+z}, 1  z  q. off(s�1)q+z is the offset used to pinpoint the corresponding short read ciphertext. On the other
hand, in each partition s, TA uses the highest ordering value {h(sq), pts} to represent this partition range. pts points to the index table Ts. As such all the
tuples for the d partitions constitutes a sorted range index ¯INDT for d index tables. Finally, TA uploads F̄ along with the secure index structure ¯INDT
and {Ts}1sd to Genobank.

Secure GRQ Search

Q̄  QueryGen(Q,K). On receiving a GRQ request with the range [L,U ] from an authorized MU, TA re-defines the query range [L,U ] to [L0, U 0]
where L0 = L � a, U 0 = U + a and a is a random number greater than the size of the longest short read. Then he generates a query set, Q = {PIi} for
L0  PIi  U 0 and further the scrambled (encrypted) query set Q̄ using pseudorandom function hk1 and a random permutation. TA submits Q̄ to Genobank
on behalf of MU.
LQ̄  Search(Q̄, ¯INDT , {Ts}, F̄). Upon receipt of Q̄, Genobank performs a binary search with each term in Q̄ on the sorted range index ¯INDT
which leads the query process to the relevant second-level index tables. Subsequently, Genobank conducts the binary search again on each related table Ts

to retrieve the intended short read ciphertexts from F̄ , puts them in the result list LQ̄.

Data Download

SR Dec(C,K). TA decrypts each encrypted short read C = {S̄R, r} in LQ̄ by S̄R� hk2 (r) and checks whether PI of each plaintext SR falls in the
range of interest [L0, U 0]. TA also deletes the out-of-query-range nucleotides and the within-range sensitive SNPs in the CONTENT field as per the range
[L,U ], and modifies the CIGAR string accordingly. Finally, TA returns the sanitized search result to MU.

Fig. 5. Proposed secure GRQ construction

to N as well. Note that the dominant computation in the query
phase is the composite-order pairing operation. Therefore,
the service provider is not likely to favor such expensive
computation approach. When ⇥(N) pairing operations are
required to search merely one short read, the scheme becomes
unrealistic in a pay-as-you-go manner, even if the computation
can be delegated to a more powerful cloud.

Last but not the least, the best search complexity we could
achieve for this strawman solution is linear search so as to
protect the query privacy, since using any sorted tree structure,
e.g. B+-tree [10], will outright leak the ordering of ciphertexts
in the tree. Then the adversary can estimate the queried range
relative to the reference genome, which may disclose the
underlying genetic test.
Observations. We observe that the straightforward order-
comparison methods used for the generic range query on
encrypted data [8], [13] or logarithmic-time search over order-
revealed sorted data structure [10] will not apply to the range-
sensitive GRQ service. To break such linkability, it requires
us to look for a novel alternative approach, in contrast to the
“off-the-shelf” methods, to protect the range information while
realizing efficient query.

B. Our Construction
We propose a secure GRQ solution using a lightweight

MSSE construction in Fig. 5. It utilizes a scalable and efficient
secure index structure, which offers not only genomic privacy
preservation but also a logarithmic-time search complexity.

Suppose there are total n nucleotides in the reference
genome and n1 short reads in a patient’s genomic data file
F . Thus, the universal position domain P contains n distinct
PI. Let a short read SRi = {PIi,CIGARi,CONTENTi},
i = 1, ..., n1. Let SRb

i be the li-bit long binary form of SRi.

Definition 2: (Ordered Set) We say S = (s1, s2, ...sN ) of
size N is an ordered set if its numerical terms are sorted by
an ascending order such that s1 < s2 < ... < sN .

Definition 3: (Scrambled Set) For an ordered set S =
(s1, s2, ...sN ), applying a pseudorandom function hk with se-
cret key k and a random permutation � to S yields a scrambled
(encrypted) set S̄ = {hk(s�(1)), hk(s�(2)), ..., hk(s�(N))}.

1) Efficient Data Protection: Typically, storing the raw
alignment data for a patient is significantly space-consuming,
e.g., even with the compressed data format CRAM, the file size
can be easily over 20 GB. The underlying data encryption is
expected to be efficient in both storage and computation. As
shown in Fig. 5, the short read is XORed with a pseudorandom
bit string produced from a random nonce. Subsequently, a
collection of the encrypted short reads along with the cor-
responding random numbers and other encrypted auxiliary
information in the original SAM/BAM file are all stored in
one secure genomic data file F̄ . This design is consistent
with the real-world situation, where a single SAM/BAM file
is used to store all the raw alignment data of a person.
Another key observation behind this design is that storing
each encrypted short read as an individual file can have an
adverse impact on the system because hundreds of millions
of small files present in the file system can degrade the cloud
performance [12]. Moreover, the query process depends on the
file storage lookup, which is often not specialized for range
query problem.

It is worth noting that TA does not directly send the
queried short reads back to MU after decryption. Instead,
he re-writes part of the result to prevent MU learning addi-
tional information beyond the requested. To protect the out-
of-query-range privacy and sensitive SNPs within the range
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Fig. 6. Hierarchical GRQ-orientated index structure with a two-phase query process

Algorithm 1 Two-phase Query Algorithm
Input: Preloaded sorted range index ¯INDT for d partitions with equal

length q, in-disk table indexes {Ts}1sd, secure genomic data file F̄ ,
and scrambled GRQ query set Q̄ = {hk1 (PIi)} for L0  PIi  U 0.

Output: GRQ query result LQ̄

1: Let LQ̄ = ; . Phase 1 query
2: for j = 1! U 0 � L0 + 1 do

3: Perform a binary search with each element in Q̄ over ¯INDT in
memory

4: Pinpoint the second-level index Ts in disk with the corresponding
pointer pts in the partition range

5: Load Ts into memory
. Phase 2 query

6: Perform a binary search with hk1 (PIi) over Ts in memory
7: Find out the file offset in Ts of the intended encrypted short read and

use it to retrieve the short read from F̄ in disk
8: Put the result in LQ̄
9: end for

return LQ̄

(Sect. III-C), TA modifies the CONTENT and the associated
CIGAR string of the corresponding short read. For example,
in Fig. 2(b), the CIGAR string is changed from 3M1I3M1D5M
to 1M1I1M1D1M1D2M in accordance with the privacy policy.

2) Secure GRQ Request Processing: Upon receipt of the
original GRQ request from DC, TA needs to transform the
query to a secure version. Specifically, TA generates a random
number a, greater than the number of nucleotides in the longest
short read in the SAM file. He then derives a new query range
[L0, U 0] from the original [L,U ] as in Fig. 5 in the sense that
a short read with its position in [L0, L � 1] may also contain
the nucleotides in [L,U ]. To preserve the symmetry property,
TA also modifies U to U + a. Then the query set size is
U 0 � L0 + 1. In the case of the query approaching the end
of the genome, TA renders a an appropriate value that may
be smaller than the maximum short read length. Finally, the
queried range can be represented by an ordered set Q and
later turned into a scrambled set Q̄ as the secure query set.

3) Scalable GRQ-oriented Index Structure in Cloud: In
order to enable large-scale privacy-preserving genomic re-
search, it is imperative to store data in an efficient and
scalable data structure. However, the current de facto genomic

data organization is SAM/BAM file specification [24]. The
binary BAM file is more data-processing friendly, but also has
been criticized for its lack of scalability in a multiprocessing
environment due to the use of a centralized header [11].

Our GRQ-oriented index structure involves a two-level
design, focusing on efficiently retrieving the intended short
reads from the secure genomic data file. As shown in Fig. 6,
a primary index ¯INDT is devised and resides in the memory
as the initial coarse-grained search phase. The benefit of this
design is that it is not necessary to load the large index set
¯IND for a patient’s entire raw alignment data into memory.

Instead, a succinct index representation ¯INDT is used to
quickly pinpoint the relevant index range, which is organized
as a secondary index table {Ts}1sd, kept in the disk storage.
To avoid the small-file problem in the cloud [12], these second-
level index tables can be stored in a file and fetched by the
pointers in ¯INDT . Ts stores the exact mapping from each
secure index to the file offset of the encrypted short read
in F̄ . Due to the saved space from ¯INDT , it is possible
to load larger index tables into memory on demand after
Phase 1 search over ¯INDT so as to enable fine-grained
Phase 2 search. As our proposed index structure are sorted by
the secure index values, any efficient logarithmic-time search
algorithm can be applied here. It is also worth noting that with
the in-memory primary index, it is possible to enable large-
scale concurrent lookups compared to the file-based indexing
scheme currently used by BAM file. The pseudo code of the
efficient two-phase query algorithm is shown in Algorithm 1.
Observations. The computation complexity of the proposed
secure GRQ search is ⇥(mlg(n1)). The secure query set size
m is possible to be as large as the size of the position domain
P , which means a considerable number of terms in Q̄ will not
have a match in the following search process, thereby wasting
the computation resources in practice. Should we pre-screen
the query term before throwing it to the search process, a
significant amount of time may be saved in a long run.

C. Improving Search Efficiency
Based on the above observations, we propose a pre-search

stage to examine the existence of the query term to boost



search efficiency as shown in Fig. 6. More precisely, we adopt
Bloom filter [28] on top of the existing secure index structure
to provide efficient membership test. The Bloom filter is
generated from the obfuscated index set ¯IND with controlled
false positive rate (FPR). By executing the membership test
for terms in Q̄ prior to the two-phase query process, we can
narrow Q̄ down to a likely smaller query set Q̄BF taken as
the input of the subsequent secure search algorithm.
Discussion. Bloom filter will only introduce false positive but
not false negative. This is desirable since no terms indeed
belonging to the result will fail the membership test. Then
we always have a complete search result. Furthermore, the
false positive will not appear in the final GRQ result because
such error can be rectified in the following exact-match search
process. Notably, the membership test does not disclose the
location of the short read in F̄ . Linearly searching the entire
file is prohibitively expensive. We still need to rely on our
efficient search algorithm over the proposed genomic index
structure to retrieve the short reads of interest.

V. SECURITY ANALYSIS

In this section, we show that our proposed secure GRQ
scheme will achieve the defined security goals.

Theorem 1: (Privacy against MU) The proposed secure GRQ
scheme satisfies the out-of-query-range privacy and sensitive
SNPs protection requirement for MU.

Proof: (sketch) To prevent MU from acquiring the out-
of-request information from the query result, TA re-writes the
corresponding fields of the short read results before returning
them to MU. More precisely, he modifies the CONTENT field
to delete the irrelevant sensitive SNPs and truncate the short
read as per the query range [L,U ]. TA also produces a new
CIGAR string accordingly. In the end, the out-of-query-range
privacy and sensitive SNPs can be well protected against MU.

The centerpiece of the proposed secure GRQ design is an
MSSE construction in the sense that we may deem position in-
formation PI of each short read a unique keyword. Intuitively,
the confidentiality of a short read and its position information
are ensured if the underlying MSSE scheme is CKA2 secure.
Therefore, the security offered by our scheme reduces to that
of the MSSE protocol.

Lemma 1: (CKA2 security for MSSE) The proposed MSSE
scheme achieves CKA2 security [14], in the random oracle
model defined in Def. 1.

Proof: Let A and S be an adversary and a simulator
in IdealA,S(�) in Def. 1, respectively. Assume that each
SR in F has a unique PI. Given the leakage function
L1(IND,F), S outputs (F̄ 0, ¯IND0

T , {T 0
s}) as follows. It

simulates each encrypted short read C0
i = Enc(k2, 0|SRi|) in

F̄ 0 for i = 1, ..., n1, where k2 is randomly selected for the
CPA-secure encryption algorithm Enc, and |SRi| is revealed
by L1. To simulate the secure index structure ¯IND0

T and
{T 0

s}, S first sets h0(i) for each SRi in F a random number,
and then generates ¯IND0

T and {T 0
s} accordingly. The Bloom

filter can also be simulated by using random numbers instead
of cryptographic hashing.

Adversary A can make polynomial number of queries by
picking a keyword set Q of t continuous position information
PI for t � 2. The leakage function L2(IND,F ,Q) discloses
LQ̄ to S . Given this, S can simulate Q̄0 by including h0(i)
for the short reads in LQ̄ and assigning the remaining in Q̄
random numbers if t > |LQ̄|.

Adversary A cannot distinguish F̄ 0 from F̄ in experiment
RealA(�) since Enc is CPA-secure. Due to the pseudorandom
function hk and cryptographic hash function, A cannot dis-
tinguish ( ¯IND0

T , {T 0
s}) and ( ¯INDT , {Ts}), and the Bloom

filters. Likewise, A cannot discern Q̄0 and Q̄. Thus, A cannot
distinguish IdealA,S(�) and RealA(�).

Theorem 2: (Security for the GRQ scheme) The proposed
secure GRQ scheme enjoys the same security guarantees as
the underlying MSSE construction, i.e., Biobank is not able
to learn any information about the content of the short reads
and position information in the query and secure index during
the search phase.

Proof: (sketch) This is inherited from the proof of Lemma
1, by which our secure GRQ scheme achieves the CKA2
security for MSSE. In other words, the adversary cannot
deduce the content of an encrypted genomic file F̄ , and the
position information of the short reads from the secure index
and query in the random oracle model.

Impact of Access Pattern Leakage. Indeed, to provide a
practical GRQ solution, we need to accept some measure
of leakage. Thus, one of our design goals is to achieve an
acceptable balance between performance and leakage. Given
that access pattern is disclosed after the query, we find that
limited partial ordering information will be revealed to the
adversary, which also applies to almost all the secure range
query constructions, regardless of the underlying primitives,
i.e. PE [9], [10] (the strawman scheme), OPSE [7], etc. Specifi-
cally, the ascending or descending data order will be inevitably
exposed if a motivated adversary observes sufficient query
results, but still he cannot determine which order is correct. For
instance, consider 3-record dataset (a, b, c). Having observed
two range query results (b, a) and (c, b), adversary can figure
out the possible data orders, either (a, b, c) or (c, b, a). We
should note that, albeit it is trivial to perform such attack on a
relatively small dataset, it is unlikely that the query results
would spread over the whole genome, instead of sporadic
genetic hotspots in light of our very constrained knowledge on
human genome at present. Compared to existing solutions, our
secure GRQ scheme, as an initial attempt, enjoys logarithmic-
time query process, and is considerably scalable and suitable
for real-world cloud environment, with equivalent or better
security guarantees. We may adopt “heavy” cryptographic
tools on top of our protocol, such as Oblivious RAM [29], for
mitigation but at the price of sacrificing the practical usability
and efficiency [27].



TABLE I
PERFORMANCE OF THE PROPOSED SECURE GRQ SCHEME WITHOUT PRE-SEARCH STAGE

d q
Index (MB) Indexing

time (s)
Loading
time (s)

Query time (s) with different range size
¯INDT Ts 100 500 1,000 5,000 10,000 50,000 100,000

21,845 14,388 1 0.66 546 0.21 0.91 3.98 7.87 38.6 75.46 385.33 761.78
16,384 19,184 0.75 0.88 778 0.18 1.44 7.99 11.86 59.41 105.47 583.87 1,017.5
10,922 28,776 0.5 1.32 790 0.14 1.96 9.94 17.16 83.65 161.12 803.78 1,568.62
5,461 57,553 0.25 2.63 758 0.11 3.71 16.1 32.09 165.88 318.1 1,636.79 3,223.33
2,184 143,884 0.1 6.59 817 0.09 8.57 39.8 79.66 401.47 805.16 3,895.04 9,071.23
1,092 287,769 0.05 13.17 1,099 0.07 16.62 79.16 159.48 791.59 1,656.91 7,947.97 18,046.59

VI. PERFORMANCE EVALUATION

In this section, we implement the proposed secure GRQ
scheme using real human raw alignment data in an approxi-
mately 32 GB CRAM file [30]. After decompression, the BAM
file is about 44 GB, which contains more than 300 million
short reads with the average read length of 100 nucleotides.
We use JAVA and shell scripts on a Linux server with a 3.1
GHz AMD FX 8120 processor and 32 GB DDR3 memory. The
server runs on a WD100ZFAEX hard disk with 1 TB storage
and 64 MB disk cache. We use SHA256 to construct the
Bloom filter in the pre-search stage. The experimental result
is an average of 10 trials.

A. Storage Overhead

1) Ciphertext Expansion: We measure the storage overhead
on Genobank for the encrypted raw alignment data of a
patient and its secure index structure. Note that the bit-
wise XOR encryption in our scheme introduces no ciphertext
expansion even for the huge-sized genomic data. In practice,
the encryption could be instantiated by CRT[AES]. Besides,
an additional 1.26 GB storage burden comes from the 4-byte
nonce for each short read in the dataset.

2) Scalability: The strawman construction will consume
prohibitive space, i.e. 700 GB or so for each short read
index since the ciphertext size is linear to the whole genome
length, thereby crippling its usability in practice. For real-
world implementation, it is straightforward to load the entire
secure index ¯IND into cloud memory, which requires roughly
14 GB with our scheme. It is significantly smaller than
the strawman solution but still not practical for processing
multiple GRQ queries concurrently even with the cloud. On
the contrary, using our hierarchical secure index design, the
cloud memory consumption for the primary index ¯INDT

is orders of magnitude smaller than both the strawman and
heuristic implementation. As shown in Table I, suppose that
storing ¯INDT in memory for each patient costs 1 MB, and
we can use up to all the 32 GB server memory, which allows
hosting more than 300 thousand patients’ primary indexes in
the memory simultaneously and demonstrates the significant
scalability of our scheme. The total size of the second-level
table indexes {Ts}1sd is comparable to the secure index
¯IND in the heuristic implementation but stored in the disk

and loaded into memory on demand. Moreover, we can speed
up the query process by spending an additional storage space
for the Bloom filter (e.g. 200 MB with FPR 6%).

B. Time Efficiency
1) Encryption and Decryption: It takes less than 4 minutes

for TA to encrypt more than 300 million short reads. This
overhead is one-time and can be further amortized by par-
allelization. Decryption will be much faster since the query
result usually is a much smaller subset of the whole genome.

2) Index Generation: This procedure also imposes a one-
time cost to TA. The computation overhead varies with the
patient’s genomic data size and index construction parameter
d. We use Linux shell script to perform several data prepro-
cessing tasks, including extracting positions of short reads in
the BAM file, generating their secure representation as well
as sorting them in the index. It takes 36 minutes to preprocess
the raw genomic data. As shown in Table I, for larger partition
number d, less time is required to generate the secure index.
This variation is due to the use of object serializer in our
Java code. The larger d is, the smaller each second-level in-
disk index table is, thus requiring less memory maneuvering
in JVM and resulting in the gain in processing speed. For the
implementation of our scheme that does not make use of the
object serializer function, we expect the performance penalty
of a smaller d to diminish. On the other hand, generating
Bloom filter in the pre-search stage needs nearly constant time,
roughly 20 minutes, for different FPR, because the number of
short reads to index for a person is constant.

3) Query Efficiency: Table I shows that query is more
efficient with an increased d value. Larger d implies bigger
first-level index, and thus a longer initial loading time. On the
other hand, since the loading time for the primary index is
less than 1 second, we believe that the load time penalty is
not significant. After this one-time loading, ¯INDT resides in
memory to facilitate expediting the query process. Moreover,
a larger d triggers a more fine-grained first-level search. As a
result, the on-demand secondary index loading is much faster
due to its reduced size. We randomly select a GRQ query
with different range size. The query time in Table I shows
a linearity with the increased range size. We can see that
our GRQ scheme is still efficient enough for practical use
even with a large query range. In contrast, query time for the
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Fig. 7. Query time for different search strategies with query size 100, 500,
1, 000, 5, 000, 10, 000, 50, 000, 100, 000. The pre-search stage is operated
on the baseline search with d = 21, 845.

PE-based strawman solution is prohibitively expensive. Using
the state-of-the-art benchmark for the costly composite-order
pairing operation [31], it will take more than one year to
search only one short read index. Notably, the OPSE-based
GRQ scheme [7] reports a 4.5 second query time with a small
100 query range size. Lastly, we can also use Bloom filter in
a pre-search stage to further ameliorate query efficiency. As
shown in Fig. 7, query time is significantly reduced by using
the Bloom filter with a small FPR.

VII. CONCLUSION

Genome-wide range query is one of the fundamental and
critical components in genomic research, medical and health-
care services. In this paper, we are among the first to propose
a scalable, privacy-preserving GRQ scheme in the cloud envi-
ronment, featuring an efficient hierarchical index structure. By
presenting a novel MSSE-based secure range query scheme,
our solution also enjoys storage and computation efficiency
without sacrificing security guarantees. The implementation
with real human raw alignment data shows its superiority over
the existing solutions.
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